17147 measured reflections 5053 independent reflections

 $R_{\rm int} = 0.029$

4421 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N,N'-Dicyclohexyl-N"-(2,6-difluorobenzoyl)-N,N'-dimethylphosphoric triamide

Mehrdad Pouravoubi,^a* Atekeh Tarahhomi,^a Arnold L. Rheingold^b and James A. Golen^b

^aDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad 91779, Iran, and ^bDepartment of Chemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA

Correspondence e-mail: mehrdad_pourayoubi@yahoo.com

Received 20 September 2011; accepted 17 October 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.037; wR factor = 0.097; data-to-parameter ratio = 18.9.

In the title molecule, $C_{21}H_{32}F_2N_3O_2P$, the P=O and N-H groups are syn with respect to each other, and the P atom is bonded in a distorted tetrahedral environment. The phosphoryl group adopts an anti orientation with respect to the carbonyl group. The angles at the tertiary N atoms (with bondangle sums of 358.4 and 357.0°) confirm their sp^2 character. In the crystal, inversion dimers linked by pairs of $N-H \cdots O$ hydrogen bonds generate $R_2^2(8)$ loops.

Related literature

For hydrogen-bond patterns in compounds containing a C(O)NHP(O) skeleton, see: Toghraee et al. (2011); Pouravoubi et al. (2011). For background to phosphoric triamide compounds containing a C(O)NHP(O) skeleton, and related bond lengths, angles and torsion angles, see: Pourayoubi et al. (2010); Amirkhanov et al. (2010); Tarahhomi et al. (2011). For a description of hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental

Crystal data

$C_{21}H_{32}F_2N_3O_2P$	$\gamma = 81.536 \ (1)^{\circ}$
$M_r = 427.47$	V = 1121.45 (10) Å ³
Triclinic, $P\overline{1}$	Z = 2
a = 10.2322 (6) Å	Mo $K\alpha$ radiation
b = 10.6188 (5) Å	$\mu = 0.16 \text{ mm}^{-1}$
c = 11.2658 (6) Å	$T = 100 { m K}$
$\alpha = 69.419 \ (1)^{\circ}$	$0.35 \times 0.30 \times 0.25 \text{ mm}$
$\beta = 79.269 \ (1)^{\circ}$	

Data collection

Bruker SMART CCD area-detector	
diffractometer	
Absorption correction: multi-scan	
(SADABS; Bruker, 2005)	
$T_{\rm min} = 0.946, T_{\rm max} = 0.961$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.037$	H atoms treated by a mixture o
$wR(F^2) = 0.097$	independent and constrained
S = 1.05	refinement
5053 reflections	$\Delta \rho_{\rm max} = 0.32 \ {\rm e} \ {\rm \AA}^{-3}$
267 parameters	$\Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$
1 restraint	

Table 1

Hydrogen-bond geometry (Å, °).

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1N \cdots O2^i$	0.86 (1)	1.90 (1)	2.7330 (13)	165 (1)
Symmetry code: (i) -	-x + 1, -y + 1,	- <i>z</i> .		

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and enCIFer (Allen et al., 2004).

Support of this investigation by Ferdowsi University of Mashhad is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2384).

References

- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
- Amirkhanov, O. V., Moroz, O. V., Znovjyak, K. O., Trush, E. A. & Sliva, T. Y. (2010). Acta Cryst. E66, o1102.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2005). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Pourayoubi, M., Tarahhomi, A., Rheingold, A. L. & Golen, J. A. (2010). Acta Cryst. E66, o3159.
- Pourayoubi, M., Tarahhomi, A., Saneei, A., Rheingold, A. L. & Golen, J. A. (2011). Acta Cryst. C67, o265-o272.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tarahhomi, A., Pourayoubi, M., Rheingold, A. L. & Golen, J. A. (2011). Struct. Chem. 22, 201-210.
- Toghraee, M., Pourayoubi, M. & Divjakovic, V. (2011). Polyhedron, 30, 1680-1690.

Acta Cryst. (2011). E67, o3027 [doi:10.1107/S1600536811043029]

N,N'-Dicyclohexyl-N''-(2,6-difluorobenzoyl)-N,N'-dimethylphosphoric triamide

M. Pourayoubi, A. Tarahhomi, A. L. Rheingold and J. A. Golen

Comment

The patterns of hydrogen bonds and their strengths on phosphoric triamides containing a C(O)NHP(O) skeleton have been discussed (Toghraee *et al.*, 2011; Pourayoubi *et al.*, 2011). The structure determination of the title compound, P(O)[2,6-F₂—C₆H₃C(O)NH][N(CH₃)C₆H₁₁]₂ (Fig. 1), was performed as part of a project in our laboratory on the synthesis of new derivatives of benzoyl phosphoric triamides with formula $XC_6H_nC(O)NHP(O)Y_2$ (for example, n = 3, X = 2,6-F₂ and $Y = NHC(CH_3)_3$: Pourayoubi *et al.*, 2010).

In the title phosphoric triamide, the phosphoryl group adopts the *anti* orientation with respect to the carbonyl group; whereas it is in a *syn* position relative to the N—H unit. The tetrahedral environment at the P atom is distorted, as previously noted for other phosphoric triamides (Amirkhanov *et al.*, 2010). The P=O, C=O and P—N bond lengths are within the expected ranges (Tarahhomi *et al.*, 2011).

The hydrogen atom of the C(=O)NHP(=O) moiety is involved in an intermolecular $-P=O\cdots H$ —N-hydrogen bond. Pairs of this type of hydrogen bonds form hydrogen-bonded dimers in the crystal (as $R_2^2(8)$ rings; see: Bernstein *et al.*, 1995).

Experimental

2,6—F₂C₆H₃C(O)NHP(O)Cl₂ was prepared according to the literature method reported by Pourayoubi *et al.* (2010).

The title compound was synthesized from the reaction of 2,6— $F_2C_6H_3C(O)NHP(O)Cl_2$ (1.09 mmol) with *N*-methylcyclohexylamine (4.36 mmol) in dry chloroform (30 ml). The amine was added dropwise to a solution of 2,6— $F_2C_6H_3C(O)NHP(O)Cl_2$ at 273 K, with continuous stirring. After 4 h, the solvent was evaporated and the obtained solid was washed with distilled water and recrystallized from a mixture of chloroform and DMF (4:1 v/v) at room temperature. IR (KBr, v, cm⁻¹): 3063 (NH), 2912, 2752, 1698, 1608, 1470, 1262, 1192, 1155, 997, 864, 815.

Refinement

All non-H atoms were refined anisotropically by full-matrix least-squares on F^2 . Hydrogen H1N was found in a difference map and N1—H1N distance was set at 0.87 (1) Å and allowed to refine with $U_{iso} = 1.2U_{eq}(N1)$. All other H atoms were placed in calculated positions with C—H distances for CH₂ of 0.99 Å, CH₃ of 0.98 Å, methine CH of 1.00 Å, and C(Ar)H 0.95 Å, and with U_{iso} of 1.2 or 1.5 times that of the parent C atom.

Figures

Fig. 1. An *ORTEP*-style plot for the title compound. Displacement ellipsoids are given at 50% probability level and H atoms are drawn as small spheres of arbitrary radii.

N,N'-Dicyclohexyl-N''-(2,6- difluorobenzoyl)-N,N'-dimethylphosphoric triamide

Crystal data

$C_{21}H_{32}F_2N_3O_2P$	Z = 2
$M_r = 427.47$	F(000) = 456
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.266 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 10.2322 (6) Å	Cell parameters from 9954 reflections
b = 10.6188 (5) Å	$\theta = 2.4 - 28.0^{\circ}$
c = 11.2658 (6) Å	$\mu = 0.16 \text{ mm}^{-1}$
$\alpha = 69.419 \ (1)^{\circ}$	T = 100 K
$\beta = 79.269 \ (1)^{\circ}$	Block, colourless
$\gamma = 81.536 (1)^{\circ}$	$0.35\times0.30\times0.25~mm$
$V = 1121.45 (10) \text{ Å}^3$	

Data collection

Bruker SMART CCD area-detector diffractometer	5053 independent reflections
Radiation source: fine-focus sealed tube	4421 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.029$
ϕ and ω scans	$\theta_{\text{max}} = 28.0^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2005)	$h = -13 \rightarrow 13$
$T_{\min} = 0.946, T_{\max} = 0.961$	$k = -13 \rightarrow 13$
17147 measured reflections	$l = -14 \rightarrow 14$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.037$	Hydrogen site location: inferred from neighbouring sites

$wR(F^2) = 0.097$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.05	$w = 1/[\sigma^2(F_o^2) + (0.0429P)^2 + 0.4607P]$ where $P = (F_o^2 + 2F_c^2)/3$
5053 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
267 parameters	$\Delta \rho_{max} = 0.32 \text{ e} \text{ Å}^{-3}$
1 restraint	$\Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$
0 constraints	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
P1	0.42370 (3)	0.41644 (3)	0.20824 (3)	0.01482 (9)
F1	0.91928 (9)	0.33633 (12)	0.27902 (10)	0.0491 (3)
F2	0.68054 (9)	0.73518 (9)	0.04970 (9)	0.0363 (2)
01	0.64907 (10)	0.41510 (13)	0.35266 (9)	0.0347 (3)
O2	0.35023 (8)	0.47928 (9)	0.09668 (8)	0.01753 (19)
N1	0.57558 (10)	0.47579 (11)	0.15972 (10)	0.0170 (2)
H1N	0.5985 (14)	0.5054 (14)	0.0781 (9)	0.020*
N2	0.34278 (10)	0.45423 (10)	0.33252 (9)	0.0165 (2)
N3	0.45145 (11)	0.25173 (11)	0.25782 (11)	0.0244 (2)
C1	0.91678 (14)	0.4643 (2)	0.19652 (16)	0.0392 (4)
C2	1.03613 (16)	0.5176 (3)	0.14059 (19)	0.0497 (5)
H2	1.1182	0.4669	0.1619	0.060*
C3	1.03445 (16)	0.6460 (3)	0.0529 (2)	0.0546 (6)
Н3	1.1166	0.6842	0.0137	0.066*
C4	0.91532 (17)	0.7212 (2)	0.02025 (17)	0.0463 (5)
H4	0.9148	0.8099	-0.0405	0.056*
C5	0.79751 (14)	0.66235 (18)	0.07925 (15)	0.0333 (4)
C6	0.79311 (13)	0.53390 (17)	0.16838 (13)	0.0283 (3)
C7	0.66617 (13)	0.46961 (15)	0.23652 (13)	0.0236 (3)
C8	0.27329 (12)	0.59130 (12)	0.31148 (11)	0.0169 (2)
H8	0.2504	0.6255	0.2224	0.020*
C9	0.36202 (14)	0.69035 (14)	0.32103 (14)	0.0258 (3)
H9A	0.3890	0.6578	0.4075	0.031*
H9B	0.4439	0.6951	0.2575	0.031*
C10	0.28793 (18)	0.83088 (16)	0.29625 (17)	0.0388 (4)
H10A	0.3451	0.8918	0.3081	0.047*
H10B	0.2701	0.8673	0.2064	0.047*
C11	0.15626 (17)	0.82817 (16)	0.38598 (17)	0.0385 (4)
H11A	0.1743	0.8016	0.4753	0.046*
H11B	0.1085	0.9197	0.3635	0.046*
C12	0.06889 (15)	0.72885 (15)	0.37619 (16)	0.0328 (3)
H12A	0.0434	0.7605	0.2892	0.039*
H12B	-0.0139	0.7250	0.4385	0.039*
C13	0.14254 (13)	0.58770 (14)	0.40322 (13)	0.0222 (3)
H13A	0.1616	0.5529	0.4927	0.027*
H13B	0.0852	0.5257	0.3933	0.027*

C14	0.36037 (14)	0.37310 (14)	0.46557 (12)	0.0248 (3)
H14A	0.3893	0.4297	0.5066	0.037*
H14B	0.4281	0.2975	0.4658	0.037*
H14C	0.2754	0.3381	0.5129	0.037*
C15	0.57908 (14)	0.17673 (14)	0.22547 (14)	0.0277 (3)
H15	0.6473	0.2439	0.1874	0.033*
C16	0.57337 (16)	0.11177 (15)	0.12540 (14)	0.0335 (3)
H16A	0.5479	0.1824	0.0465	0.040*
H16B	0.5042	0.0468	0.1585	0.040*
C17	0.70838 (18)	0.03820 (16)	0.09313 (15)	0.0400 (4)
H17A	0.6998	-0.0088	0.0334	0.048*
H17B	0.7750	0.1049	0.0497	0.048*
C18	0.7570 (2)	-0.06431 (18)	0.21368 (16)	0.0476 (5)
H18A	0.6957	-0.1369	0.2517	0.057*
H18B	0.8468	-0.1059	0.1906	0.057*
C19	0.76312 (19)	0.00220 (19)	0.31179 (17)	0.0465 (5)
H19A	0.8303	0.0692	0.2766	0.056*
H19B	0.7914	-0.0671	0.3901	0.056*
C20	0.62703 (17)	0.07244 (16)	0.34615 (15)	0.0362 (4)
H20A	0.6341	0.1178	0.4076	0.043*
H20B	0.5613	0.0045	0.3877	0.043*
C21	0.33158 (15)	0.17706 (14)	0.30012 (15)	0.0304 (3)
H21A	0.3101	0.1560	0.2283	0.046*
H21B	0.2564	0.2325	0.3300	0.046*
H21C	0.3483	0.0930	0.3702	0.046*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
P1	0.01077 (15)	0.01879 (16)	0.01385 (15)	0.00019 (11)	-0.00010 (11)	-0.00559 (12)
F1	0.0221 (5)	0.0863 (8)	0.0401 (6)	0.0158 (5)	-0.0113 (4)	-0.0274 (6)
F2	0.0281 (5)	0.0433 (5)	0.0395 (5)	-0.0109 (4)	0.0008 (4)	-0.0161 (4)
01	0.0187 (5)	0.0684 (8)	0.0170 (5)	0.0035 (5)	-0.0043 (4)	-0.0164 (5)
O2	0.0119 (4)	0.0264 (5)	0.0154 (4)	-0.0013 (3)	-0.0006 (3)	-0.0092 (4)
N1	0.0116 (5)	0.0268 (5)	0.0126 (5)	-0.0012 (4)	-0.0006 (4)	-0.0074 (4)
N2	0.0140 (5)	0.0206 (5)	0.0124 (5)	0.0026 (4)	-0.0013 (4)	-0.0044 (4)
N3	0.0186 (6)	0.0198 (5)	0.0281 (6)	0.0026 (4)	0.0060 (5)	-0.0061 (5)
C1	0.0152 (7)	0.0836 (13)	0.0351 (8)	0.0013 (7)	-0.0044 (6)	-0.0418 (9)
C2	0.0152 (7)	0.1089 (17)	0.0493 (11)	-0.0083 (9)	0.0001 (7)	-0.0576 (12)
C3	0.0188 (8)	0.1161 (19)	0.0591 (12)	-0.0293 (10)	0.0157 (8)	-0.0679 (13)
C4	0.0354 (9)	0.0766 (13)	0.0434 (10)	-0.0298 (9)	0.0141 (7)	-0.0405 (10)
C5	0.0183 (7)	0.0595 (10)	0.0340 (8)	-0.0111 (7)	0.0033 (6)	-0.0307 (8)
C6	0.0125 (6)	0.0588 (10)	0.0244 (7)	-0.0046 (6)	-0.0005 (5)	-0.0274 (7)
C7	0.0127 (6)	0.0419 (8)	0.0202 (6)	0.0028 (5)	-0.0026 (5)	-0.0170 (6)
C8	0.0153 (6)	0.0198 (6)	0.0155 (6)	0.0015 (5)	-0.0024 (4)	-0.0070 (5)
C9	0.0236 (7)	0.0311 (7)	0.0262 (7)	-0.0076 (6)	0.0032 (5)	-0.0154 (6)
C10	0.0485 (10)	0.0270 (8)	0.0419 (9)	-0.0089 (7)	0.0094 (8)	-0.0186 (7)
C11	0.0439 (10)	0.0299 (8)	0.0419 (9)	0.0036 (7)	0.0046 (7)	-0.0202 (7)

C12	0.0257 (8)	0.0348 (8)	0.0367 (8)	0.0103 (6)	-0.0032 (6)	-0.0163 (7)
C13	0.0143 (6)	0.0279 (7)	0.0246 (7)	0.0012 (5)	0.0004 (5)	-0.0120 (5)
C14	0.0206 (7)	0.0320 (7)	0.0141 (6)	0.0053 (5)	-0.0007 (5)	-0.0023 (5)
C15	0.0244 (7)	0.0221 (7)	0.0261 (7)	0.0086 (5)	0.0052 (6)	-0.0041 (5)
C16	0.0380 (9)	0.0265 (7)	0.0252 (7)	0.0099 (6)	0.0039 (6)	-0.0049 (6)
C17	0.0461 (10)	0.0314 (8)	0.0272 (8)	0.0161 (7)	0.0073 (7)	-0.0051 (6)
C18	0.0545 (12)	0.0374 (9)	0.0338 (9)	0.0271 (8)	0.0017 (8)	-0.0075 (7)
C19	0.0461 (11)	0.0447 (10)	0.0351 (9)	0.0269 (8)	-0.0058 (8)	-0.0087 (7)
C20	0.0383 (9)	0.0343 (8)	0.0266 (8)	0.0154 (7)	-0.0009(7)	-0.0080 (6)
C21	0.0281 (8)	0.0204 (7)	0.0364 (8)	-0.0035(5)	0.0085 (6)	-0.0078 (6)
						()
Geometric par	ameters (Å, °)					
P1—O2		1.4848 (9)	C11-		1.5	23 (2)
P1—N2		1.6348 (11)	C11-	H11A	0.9	900
P1—N3		1.6363 (11)	C11-	-H11B	0.9	900
P1—N1		1.6854 (10)	C12-	C13	1.5	295 (19)
F1—C1		1.350 (2)	C12-	—H12A	0.9	900
F2—C5		1.3552 (19)	C12-	—H12B	0.9	900
O1—C7		1.2205 (16)	C13-	—H13A	0.9	900
N1—C7		1.3612 (15)	C13-	—H13B	0.9	900
N1—H1N		0.859 (9)	C14-	—H14A	0.9	800
N2-C14		1.4725 (15)	C14-	-H14B	0.9	800
N2—C8		1.4819 (15)	C14-	H14C	0.9	800
N3—C21		1.4707 (17)	C15-	C16	1.5	28 (2)
N3—C15		1.4810 (17)	C15-	C20	1.5	314 (19)
C1—C2		1.369 (2)	C15-	-H15	1.0	000
C1—C6		1.399 (2)	C16-		1.5	32 (2)
C2—C3		1.374 (3)	C16-	-H16A	0.9	900
С2—Н2		0.9500	C16-	-H16B	0.9	900
C3—C4		1.390 (3)	C17-		1.5	26 (2)
С3—Н3		0.9500	C17-	-H17A	0.9	900
C4—C5		1 384 (2)	C17-	-H17B	0.9	900
С4—Н4		0.9500	C18-		1.5	21 (3)
C5—C6		1.382 (2)	C18-	-H18A	0.9	900
C6—C7		1 5046 (18)	C18-	-H18B	0.9	900
C8—C13		1 5271 (17)	C19-		1.5	30 (2)
C8—C9		1 5294 (17)	C19-	—H19A	0.9	900
С8—Н8		1.0000	C19-	-H19B	0.9	900
C9—C10		1 527 (2)	C20-	-H20A	0.9	900
С9—Н9А		0.9900	C20-	-H20B	0.9	900
С9—Н9В		0.9900	C21-	-H21A	0.9	800
C10—C11		1.524 (2)	C21-	-H21B	0.9	800
C10—H10A		0.9900	C21-	H21C	0.9	800
C10—H10B		0.9900				
02P1N2		110 40 (5)	C11		110	95 (12)
02 - 11 - 102 02 - P1 - N2		116.40 (3)	C11	_C12_H12A	100) 5
$N2_1 1 = N3$		105 60 (6)	C12	_C12H12А	105	
$\Omega^2 D1 N1$		105.00 (0)	C15-	—С12—1112А _С12_ Ц12Р	105	
02—r 1—INI		105.57 (5)	C11-	-C12	109	

N2—P1—N1	112.66 (5)	C13—C12—H12B	109.5
N3—P1—N1	105.73 (6)	H12A—C12—H12B	108.0
C7—N1—P1	126.27 (9)	C8—C13—C12	110.68 (11)
C7—N1—H1N	118.7 (10)	C8—C13—H13A	109.5
P1—N1—H1N	114.7 (10)	С12—С13—Н13А	109.5
C14—N2—C8	116.58 (10)	C8—C13—H13B	109.5
C14—N2—P1	123.33 (9)	С12—С13—Н13В	109.5
C8—N2—P1	118.49 (8)	H13A—C13—H13B	108.1
C21—N3—C15	116.90 (11)	N2—C14—H14A	109.5
C21—N3—P1	115.51 (9)	N2—C14—H14B	109.5
C15—N3—P1	124.57 (9)	H14A—C14—H14B	109.5
F1—C1—C2	118.10 (16)	N2—C14—H14C	109.5
F1—C1—C6	118.56 (14)	H14A—C14—H14C	109.5
C2—C1—C6	123.28 (19)	H14B—C14—H14C	109.5
C1—C2—C3	118.40 (17)	N3—C15—C16	113.22 (12)
C1—C2—H2	120.8	N3—C15—C20	111.07 (11)
С3—С2—Н2	120.8	C16—C15—C20	111.21 (12)
C2—C3—C4	121.52 (15)	N3—C15—H15	107.0
С2—С3—Н3	119.2	С16—С15—Н15	107.0
С4—С3—Н3	119.2	С20—С15—Н15	107.0
C5—C4—C3	117.7 (2)	C15—C16—C17	111.21 (14)
С5—С4—Н4	121.1	C15—C16—H16A	109.4
C3—C4—H4	121.1	C17—C16—H16A	109.4
F2—C5—C6	118.33 (12)	C15—C16—H16B	109.4
F2—C5—C4	118.37 (17)	С17—С16—Н16В	109.4
C6—C5—C4	123.29 (16)	H16A—C16—H16B	108.0
C5—C6—C1	115.79 (14)	C18—C17—C16	111.24 (13)
C5—C6—C7	124.16 (13)	C18—C17—H17A	109.4
C1—C6—C7	120.02 (15)	С16—С17—Н17А	109.4
O1—C7—N1	123.71 (12)	С18—С17—Н17В	109.4
O1—C7—C6	120.91 (11)	С16—С17—Н17В	109.4
N1—C7—C6	115.38 (11)	H17A—C17—H17B	108.0
N2—C8—C13	111.30 (10)	C19—C18—C17	111.16 (14)
N2—C8—C9	112.22 (10)	C19—C18—H18A	109.4
C13—C8—C9	110.75 (10)	C17—C18—H18A	109.4
N2—C8—H8	107.4	C19—C18—H18B	109.4
С13—С8—Н8	107.4	C17—C18—H18B	109.4
С9—С8—Н8	107.4	H18A—C18—H18B	108.0
C10-C9-C8	110.65 (12)	C18—C19—C20	110.98 (16)
С10—С9—Н9А	109.5	C18—C19—H19A	109.4
С8—С9—Н9А	109.5	С20—С19—Н19А	109.4
С10—С9—Н9В	109.5	C18—C19—H19B	109.4
С8—С9—Н9В	109.5	С20—С19—Н19В	109.4
Н9А—С9—Н9В	108.1	H19A—C19—H19B	108.0
С11—С10—С9	111.80 (13)	C19—C20—C15	110.31 (12)
C11—C10—H10A	109.3	C19—C20—H20A	109.6
С9—С10—Н10А	109.3	C15—C20—H20A	109.6
C11—C10—H10B	109.3	С19—С20—Н20В	109.6
С9—С10—Н10В	109.3	С15—С20—Н20В	109.6

H10A—C10—H10B	107.9	H20A—C20—H20B	108.1		
C12-C11-C10	110.74 (13)	N3—C21—H21A	109.5		
C12—C11—H11A	109.5	N3—C21—H21B	109.5		
C10-C11-H11A	109.5	H21A—C21—H21B	109.5		
C12—C11—H11B	109.5	N3—C21—H21C	109.5		
C10-C11-H11B	109.5	H21A—C21—H21C	109.5		
H11A—C11—H11B	108.1	H21B—C21—H21C	109.5		
O2—P1—N1—C7	164.83 (11)	P1—N1—C7—C6	-178.43 (10)		
N2—P1—N1—C7	44.27 (13)	C5—C6—C7—O1	-131.18 (15)		
N3—P1—N1—C7	-70.59 (12)	C1—C6—C7—O1	47.0 (2)		
O2—P1—N2—C14	157.51 (10)	C5-C6-C7-N1	49.58 (19)		
N3—P1—N2—C14	30.20 (11)	C1—C6—C7—N1	-132.22 (14)		
N1—P1—N2—C14	-84.74 (11)	C14—N2—C8—C13	-50.03 (14)		
O2—P1—N2—C8	-37.41 (10)	P1—N2—C8—C13	143.89 (9)		
N3—P1—N2—C8	-164.72 (9)	C14—N2—C8—C9	74.73 (13)		
N1—P1—N2—C8	80.35 (9)	P1—N2—C8—C9	-91.36 (11)		
O2—P1—N3—C21	-60.31 (12)	N2-C8-C9-C10	178.90 (11)		
N2—P1—N3—C21	62.93 (11)	C13—C8—C9—C10	-56.04 (15)		
N1—P1—N3—C21	-177.45 (10)	C8—C9—C10—C11	55.54 (17)		
O2—P1—N3—C15	99.32 (12)	C9—C10—C11—C12	-55.57 (19)		
N2—P1—N3—C15	-137.44 (11)	C10-C11-C12-C13	56.09 (18)		
N1—P1—N3—C15	-17.82 (13)	N2-C8-C13-C12	-177.37 (10)		
F1—C1—C2—C3	177.59 (14)	C9—C8—C13—C12	57.05 (14)		
C6—C1—C2—C3	0.3 (2)	C11—C12—C13—C8	-57.15 (16)		
C1—C2—C3—C4	-0.3 (2)	C21—N3—C15—C16	54.69 (16)		
C2—C3—C4—C5	0.0 (2)	P1-N3-C15-C16	-104.68 (13)		
C3—C4—C5—F2	179.09 (13)	C21—N3—C15—C20	-71.27 (17)		
C3—C4—C5—C6	0.2 (2)	P1-N3-C15-C20	129.36 (12)		
F2C5C1	-179.04 (12)	N3-C15-C16-C17	178.75 (11)		
C4—C5—C6—C1	-0.2 (2)	C20-C15-C16-C17	-55.36 (16)		
F2C5C7	-0.8 (2)	C15-C16-C17-C18	54.61 (19)		
C4—C5—C6—C7	178.10 (13)	C16-C17-C18-C19	-55.4 (2)		
F1—C1—C6—C5	-177.37 (12)	C17—C18—C19—C20	56.9 (2)		
C2-C1-C6-C5	-0.1 (2)	C18—C19—C20—C15	-57.2 (2)		
F1-C1-C6-C7	4.3 (2)	N3-C15-C20-C19	-176.48 (14)		
C2—C1—C6—C7	-178.47 (13)	C16-C15-C20-C19	56.45 (18)		
P1—N1—C7—O1	2.4 (2)				
Hydrogen-bond geometry (Å, °)					

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N1—H1N···O2 ⁱ	0.86(1)	1.90 (1)	2.7330 (13)	165.(1)
Symmetry codes: (i) $-x+1$, $-y+1$, $-z$.				

